这篇文章给大家聊聊关于数学模型的作用,以及数学模型的作用和意义对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。
本文目录
什么是数学建模思想数学建模思想在数学中有什么作用
上一节课,我们讲了“【关系】是数学思想的基础,也是数学思想的核心!”可以说,数学是一门关系学。不论是什么样的数学题,其实都是在围绕着“关系”来论证的。解题的过程,其实就是“找关系,理顺关系”的过程。那么,我们今天讲一下数学思想中的“建模思想”:
一道数学题摆在你的面前,如果单纯地把它只是当成个题来看,如果单纯地把它当成一个白纸黑字来看,那么就显得很抽象,理解起来有点儿难,做起来就更难。但是,如果你把它跟生活联系在一起,你把它跟生活中的事物联系在一起,那么再难的数学题也就变得简单了许多。
很显然,只是用数学语言来描述的数学是很抽象的,只是用数学语言来描述的数学题也是很抽象的。那么,什么是数学语言呢,那就是跟数学相关的一切语言,说白了,那就是数学书里的一切语言,数学资料里的一切语言,数学题中的一切语言,包括数字、文字、字母及符号等等。也就是为数学服务的一切语言。比如一道数学题,这道数学题里面的一切语言,哪怕是一个字符都是数学语言,这样明白了吧!
而现实生活中的东西就变得很直观了,让人看得是一清二楚,思路自然也就明明白白了。单纯地看数学题很抽象,而现实中的东西却很直观,那么一个是抽象的题,一个是直观的东西,二者有什么联系呢?
这就是今天讲的数学谋略之“建模思想”。
建模思想,其实就是,数学与现实的关系。数学是为生活服务的,数学是为了解决现实生活中的东西所存在的问题。数学来源于生活,反映的是现实生活中的问题。也就是说,你看到的每一道数学题,其实就是一个现实生活中的问题,你看到的每一道数学题,其实就是现实生活中的一个东西,只是这个东西被数学语言描述成了一个数学问题,仅此而已
有些同学,为什么觉得数学很难?为什么觉得数学很抽象?为什么觉得总是学不好数学?其根本原因就是,这些同学把数学和生活分开了,只是把数学看成了数学,只是把数学题看成了白纸黑字写的数学题。
数学和生活是一个整体,谁也离不开谁,数学就是生活,生活就是数学。数学是思想,生活是肉体,没有肉体的思想是没有意义的。这就是数学的本质。建模思想恰恰揭露了数学的本质!
同样的学校,同样的数学课本,同样老师讲的课,同样的数学题,有的学生成绩好,有的学生成绩差,为什么呢?
数学好的同学与数学差的同学,他们的差别其实就在于,好同学把数学看成了生活,把数学问题看成了生活中的问题,把数学题看成了生活中的东西,他们把数学和生活联系在了一起,而学习差的同学眼睛里只有数学题,而没有生活,他们不懂得数学的本质,他们只是把数学孤零零地看成了白纸黑字的数学,而丢掉了数学反映生活的本质!
讲了这么多,其实就是为了让大家能够更好地明白“到底什么是数学中的建模思想”。相信大家看到这里,已经从模糊中走了出来,已经由模糊变得清晰了!但是,还没有完,不讲得让大家都彻底地明白我绝不罢休,这就是我讲课的风格,我会用最亲民的语言、最简单的语言、最好懂的语言来为大家把“数学建模思想”讲透,让你们看得清清楚楚!
模型大家都见过吧,各种各样的模型,比正方体、球体、锥体、圆柱体、飞机模型、轮船模型、坦克模型、汽车模型……只要是生活中存在的东西,都可以做成模型。所谓的模型,其实就是利用一定的比例把现实东西的样子缩小了,其实模型就是现实东西的缩影!
数学,其实就是现实生活中东西的模型,每一道数学题,其实就是一个来源于生活的模型,它是现实中东西的缩影!它只是通过数学语言,把现实生活中实实在在的东西描述了出来,变成了一个数学题,又叫做“数学模型”。“数学模型”实质上就是现实生活中东西的缩影!
也就是说,“数学建模思想”其实就是用数学语言把现实生活中的东西存在的问题转化成了一个数学问题,然后再用数学知识点去解决这个现实生活中的东西存在的问题!
同学们经常做数学题,应该不难发现这么一个现象,不论什么样的应用题,里面的数据其实反应的就是现实。你肯定没有见过“学校的操场长几毫米”的说法吧。
再举一个例子,我们知道测量长度有各种各样的尺子,比如测量一个学校操场的周长,如果不用计算,我们也能做到,用尺子测量就行了,那么要求操场的占地面积呢,听说过有测量面积的工具吗?是不是需要计算呀,如果需要计算,那就必须把这个现实存在的操场面积问题,用数学语言转化成数学问题,然后用数学面积公式去计算。
有的同学喜欢抬杠,也就是传说中的“杠精”,说面积可以到生活中测量。好吧,就算你说的是真的,那么,请问一个城市的占地面积怎么测量,地球的表面积怎么测量?如果你还说可以的话,那么,请问火星的表面积怎么测量?难道你要飞到火星上去测量吗?显然是不科学的。这不是为了抬杠,这只是想让大家明白一个道理,那就是生活中的许多问题都是靠数学解决的,都是把现实生活中存在的问题转化成数学问题去解决的。
“数学建模思想”分两部分,一部分是“构建数学模型”,就是把生活中的东西存在的问题用数学语言描述成躺在纸上的一道数学题;另一部分是“解决问题”,也就是用数学知识去解决现实生活中存在的问题!
对于学生来说,我们不关心“构建模型”,“构建模型”那是出题人的事情,我们只关心“解决问题”,解题是学生们应该做的事情!
讲到这里,相信大家已经明白了什么是“数学建模思想”了,我再给大家总结一下:
“数学建模思想”的核心,就是数学和生活密不可分,数学是生活的缩影。所有的数学题都能在生活中找到它的原形,每一道数学题其实就是生活中存在的一个东西。把数学题当成生活中的东西看,一个抽象,一个直观,把抽象和直观联系起来,数学题也就由难变得简单了!
好了,同学们,讲到这里,你们还会把数学题当成一个干巴巴的白纸黑字吗?数学建模思想吃透了,学起数学来就事半功倍了!
今天就讲到这里,我们下一节课讲“学习最有效的方法”!谢谢大家!
数学模型有什么用
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其
数学工具
一般是代效方程、微分方程、
积分方程
和
差分方程
等,(2)描述客体或然现象的
随机性
模型,其
数学模型方法
是科学研究相创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
用字母、数字和其他
数学符号
构成的等式或不等式,或用图表、图像、框图、
数理逻辑
等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。
静态和动态模型
静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用
代数方程
来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。
经典控制理论
中常用的系统的
传递函数
也是动态模型,因为它是从描述系统的微分方程变换而来的(见
拉普拉斯变换
)。
分布参数和集中参数模型
分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性
常微分方程
来描述系统的动态特性。在许多情况下,分布参数模型借助于空间
离散化
的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散
时间模型
模型中的
时间变量
是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
随机性和确定性模型
随机性模型中变量之间关系是以统计值或
概率分布
的形式给出的,而在确定性模型中变量间的关系是确定的。
参数与非参数模型
用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种
系统辨识
的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用
叠加原理
,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以
线性化
为线性模型,方法是把非线性模型在工作点
邻域
内展成
泰勒级数
,保留一阶项,略去高阶项,就可得到近似的线性模型。
数学模型的作用主要有哪两个方面来表达
—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.
模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.
模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.
模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.
模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.
数学建模常用模型及其作用
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算
法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要
处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题
属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、
Lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉
及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计
中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是
用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实
现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛
题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好
使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只
认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非
常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常
用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调
用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该
要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab
进行处理)
作用:
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。
数学建模的作用和意义
建模作用:
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。
自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
建模意义:
思考方法:
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音、录像、比喻、传言等等。为了使描述更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
应用数学模型
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础、敏锐的洞察力和想象力、对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径。数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之一。
关于数学模型的作用,数学模型的作用和意义的介绍到此结束,希望对大家有所帮助。