很多朋友对于时域抽样定理和什么是时域抽样定理不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
本文目录
简述时域采样定理
时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。
频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/(2F),便可根据各采样值完全恢复原来的信号f(t)。这是时域采样定理的一种表述方式。
时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/(2fM)的采样值来确定,即采样点的重复频率f≥(2fM)。
扩展资料:
时域是真实世界,是惟一实际存在的域。因为人们的经历都是在时域中发展和验证的,已经习惯于事件按时间的先后顺序地发生。而评估数字产品的性能时,通常在时域中进行分析,因为产品的性能最终就是在时域中测量的。
若考虑离散时间,时域中的函数或信号,在各个离散时间点的数值均为已知。若考虑连续时间,则函数或信号在任意时间的数值均为已知。
在研究时域的信号时,常会用示波器将信号转换为其时域的波形。
参考资料来源:百度百科-采样定理
时域抽样定理是什么,抽样定理是什么
1.就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。
2.抽样定理指出,由样值序列无失真恢复原信号的条件是f S≥2 f h,为了满足抽样定理,要求模拟信号的频谱限制在0~f h之内(fh为模拟信号的最高频率)。
3.为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生折叠噪声。
急求!!!什么是时域采样定理和频域采样定理
采样定理是美国电信工程师H.奈奎斯特在1928年提出的,采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。
时域采样定理
频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/(2F),便可根据各采样值完全恢复原来的信号f(t)。这是时域采样定理的一种表述方式。
时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/(2fM)的采样值来确定,即采样点的重复频率f≥(2fM)。图为模拟信号和采样样本的示意图。时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。
频域
对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值来表示,只要这些采样点的频率间隔ω≦π/tm。
什么是低通抽样定理什么是带通抽样定理
有带通采样定理的,采样频率=2fh/m,其中m是一个不超过fh/b的整数,fh是上频界,b是带宽。
“低通采样定理”可简称“采样定理”在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息。这个结论称为“采样定理”。
对带通信号,可以使用等效低通信号表示,只要对其等效低通信号满足奈奎斯特采样定理就可以。实际的带通信号一般都通过等效低通来实现,之后再通过变频得到带通信号,而一般不直接对带通信号进行采样,这个在通信原理或者信号系统应该有详细说明吧。
(1)cos(2π*fc*t)↔(1/2)[δ(f+fc)+δ(f-fc)] g(t)=10cos(120πt)+cos(200πt) G(f)=5[δ(f+60)+δ(f-60)]+[δ(f+100)+δ(f-100)]
(2)滤波器的截止频率=信号最高频率fH=100hz
(3)由奈奎斯特低通抽样定理,fs=2fH=200hz
扩展资料:
抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分。
抽样定理:设时间连续信号,其最高截止频率为,如果用时间间隔为的开关信号对进行抽样时,则就可被样值信号唯一地表示。在一个频带限制在内的时间连续信号,如果以小于等于的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
或者说,如果一个连续信号的频谱中最高频率不超过,这种信号必定是个周期性的信号,当抽样频率时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。
简述奈奎斯特时域抽样定理
奈奎斯特抽样定理指若频带宽度有限的,要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高频率。
抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。
抽样频率大于2倍频谱最高频率时,信号的频谱无混叠。
OK,本文到此结束,希望对大家有所帮助。