大家好,关于高中数学必修四视频很多朋友都还不太明白,今天小编就来为大家分享关于高中数学必修四第三章的知识,希望对各位有所帮助!
本文目录
高中数学必修四知识点总结
高中同学们学习任务日益繁重,自然不能平均分配学习任务。以下是由我为大家整理的“高中数学必修四知识点总结”,仅供参考,欢迎大家阅读。
高中数学必修四知识点总结
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
2.重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数。
难点:函数、圆锥曲线。
高考相关考点:
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件。
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用。
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用。
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用。
⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用。
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系。
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用。
⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量。
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用。
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布。
⑿导数:导数的概念、求导、导数的应用。
⒀复数:复数的概念与运算。
拓展阅读:如何学好数学
一、要有良好的学习习惯
好习惯是取得优秀成绩的必要条件,可以事半功倍。什么是好习惯呢?
1.勤奋
手勤:多记(课堂笔记、好题、好解法、错题本)、多做(练习)、多总结(知识总结、方法总结)。
眼勤:多看课本、课外书、笔记、错题本。
耳勤:听讲仔细。
嘴勤:多问,有问题及时解决,不留后患。
脑勤:多想,对知识、题目等不但要弄清楚是什么、怎样做,还要多想几个为什么?
其中最重要的是动手和动脑。
2.深入
对所学的知识不但要记住,而且最好弄清楚是怎么来的?解题中怎么使用?对一些好的题目不要满足于会做,还要考虑解法是怎么想出来的?哪种方法更好?
“会”有不同的层次:
知识:知道→理解→记住→会用→推广
解题:会做一道题→会做一类题→灵活运用和创新
3.严谨
数学是最严谨的学科。知识要严谨,解题要严谨。不严谨,遇到题目不是不会做,就是解不完整,得分就不全。
4.其他
(1)戒掉恶习:网络、电视、手机等,要把它们变成学习工具。
(2)不找借口:成绩不好时,要多找自身原因,不要怨天尤人。一样的老师、一样的同学、一样的课本和参考书、一样的试卷,成绩却差别很大,因此主要原因在个人。用借口掩盖真实原因,不利于解决实际问题。
忠告:学习是自己的事情,任何人都不能包办代替!家长、老师是厨师,只能把饭菜做得更好吃,更有营养,更好消化,但只有你爱吃才会有效果。
所以,作为学生,要认识到自己在学习中的地位;作为家长,要注意你主要应该做的是调动孩子的积极性,孩子自己动起来了,才会有好的成绩。
二、好基础
1.基础知识要扎实,想提分必须有本钱举个不太恰当的例子,这就象经商,你投资1元钱,即使盈利100%,也就是1元的利润,但若投资1万元,哪怕只盈利10%,利润也有1000元。所以,要想学习成绩有大的提高,必须要有扎实的知识储备。所以,你若有20分的基础,提高100%,才到40分。
提几点建议:
(1)自我弥补:小学或初中的,可以自补,年龄增长了,智力提高了,过去学起来非常困难的现在可能一看就明白。
(2)个别指导:对于高中的知识,可以找老师有针对性的进行指导。但应明白,个别指导只是应急措施,不能有依赖性。
(3)资料:借助某些资料,可以快速补充基础知识。
老师经常告诉学生,基础知识不是万能的,没有基础知识是万万不能的。这是讲知识与解题的关系,知识点懂了,不一定会解题,但用到的知识点没掌握,则100%不会解题。
2.下苦功走出恶性循环
良性循环:做题快→用时少→解题更多→能力更强→做题更快
恶性循环:做题慢→用时多→解题更少→能力更差→做题更慢
一旦进入恶性循环,学生是很苦恼的。一般解决恶性循环的办法就是“恶补”,就是人家休息你不休,人家玩你少玩或不玩。通过一段时间的努力,逐渐形成良性循环,以后问题变会变得很容易。特别是过去好,忽然变差的那种,这样很管用的。
三、好方法
1.预习很重要:往往被忽略,理由:没时间,看不懂,不必要等。预习是学习的必要过程,还是提高自学能力的好方法。
2.听讲有学问:听分析、听思路、听应用,关键内容一字不漏,注意记录。
3.做好错题本:每个会学习的学生都会有。最好再加个“好题本”。发现许多同学没有错题本,或者是只做不用。这样学习效果都不好。
4.用好课外书:正确认识网络课程和课外书籍,是副食,是帮助吸收的良药,绝对不是课堂学习的替代品。
5.注意总结和反思:知识点、解题方法和技巧、经验和教训
6.接受数学思想方法的指导:要注意数学思想和方法的指导,站得高,才能看得远。
高中数学必修4平面向量知识点总结
平面向量是高中数学中基本内容,必修四课本的难点,有哪些知识点需要学习?下面是我给大家带来的高中数学必修4平面向量知识点,希望对你有帮助。
高中数学必修4平面向量知识点坐标表示法
平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底。由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。
来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用
向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.
向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.
方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.
长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.
向量的运算
1、向量的加法:
AB+BC=AC
设a=(x,y) b=(x',y')
则a+b=(x+x',y+y')
向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:
交换律:
a+b=b+a
结合律:
(a+b)+c=a+(b+c)
a+0=0+a=a
2、向量的减法
AB-AC=CB
a-b=(x-x',y-y')
若a//b
则a=eb
则xy`-x`y=0
若a垂直b
则ab=0
则xx`+yy`=0
3、向量的乘法
设a=(x,y) b=(x',y')
a·b(点积)=x·x'+y·y'=|a|·|b|*cos夹角
4、向量有关概念:
(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到的向量是_____(答:(3,0))
(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;
(3)单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);
(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;
(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:‖,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线。
高中数学必修4平面向量例题1.已知点A(1,1),B(-1,5)及AC向量=1/2AB向量,AD向量=2AB向量,AE向量=-1/2AB向量,求点C,D,E的坐标。
设C点(x,y),则AB=(-2,4),AC=(x-1,y-1).
由AC=1/2AB得:
x-1=1/2×(-2)=-1,
y-1=1/2×4=2
设D点(x,y),则AD=(x-1,y-1).
由AD=2AB得:
x-1=2×(-2)=-4,
y-1=2×4=8
设E点(x,y),则AE=(x-1,y-1).
由AE=-1/2AB得:所以,x=-3,y=9,所以点C的坐标是(-3,9)所以,x=0,y=3,所以点C的坐标是(0,3)
x-1=-1/2×(-2)=1,
y-1=-1/2×4=-2
所以,x=2,y=-1,所以点C的坐标是(2,-1)
高中数学学习方法课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
高中数学必修4辅助角公式
学习高中数学必修4要学会对辅助角的公式进行归纳整理,高中数学必修4辅助角公式有哪些呢?下面是我为大家整理的高中数学必修4辅助角公式,希望对大家有所帮助!
高中数学必修4辅助角公式 1.两角和差公式(写的都要记)sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
高中数学必修4辅助角公式 2.用以上公式可推出下列二倍角公式tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
(上面这个余弦的很重要)
sin2A=2sinA*cosA
高中数学必修4辅助角公式 3.半角的只需记住这个tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
高中数学必修4辅助角公式 4.用二倍角中的余弦可推出降幂公式(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
高中数学必修4辅助角公式 5.用以上降幂公式可推出以下常用的化简公式1-cosA=sin^(A/2)*2
高中数学必修4《平面向量的基本定理及坐标表示》教案
高中数学必修4《平面向量的基本定理及坐标表示》教案【一】
教学准备
教学目标
平面向量复习
教学重难点
平面向量复习
教学过程
平面向量复习
知识点提要
一、向量的概念
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
2、叫做单位向量
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:几何表示法、字母表示法、坐标表示法
三、向量的加减法及其坐标运算
四、实数与向量的乘积
定义:实数λ与向量的积是一个向量,记作λ
五、平面向量基本定理
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2叫基底
六、向量共线/平行的充要条件
七、非零向量垂直的充要条件
八、线段的定比分点
定比分点坐标公式及向量式
九、平面向量的数量积
(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
(3)平面向量的数量积的坐标表示
十、平移
典例解读
1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
其中,正确命题的序号是______
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____
3、若将向量a=(2,1)绕原点按逆时针方向旋转得到向量b,则向量b的坐标为_____
4、下列算式中不正确的是()
(A) AB+BC+CA=0(B) AB-AC=BC
(C) 0·AB=0(D)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=()
、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为()
(A)y=(x-2)2-1(B)y=(x+2)2-1(C)y=(x-2)2+1(D)y=(x+2)2+1
7、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为()
(A)3x+2y-11=0(B)(x-1)2+(y-2)2=5
(C)2x-y=0(D)x+2y-5=0
8、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则 PQ=_________
9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于()
(A)-5(B)5(C)7(D)-1
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则()
(A)(a)2·(b)2=(a·b)2(B)|a+b|>|a-b|
(C)(a·b)·c-(b·c)·a与b垂直(D)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是()
(A)2(B)0(C)1(D)-1/2
16、利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)
17、在三角形ABC中,=(2,3),=(1,k),且三角形ABC的一个内角为直角,求实数k的值
18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量
高中数学必修4《平面向量的基本定理及坐标表示》教案【二】教学准备
教学目标
1、理解平面向量的坐标的概念;
2、掌握平面向量的坐标运算;
3、会根据向量的坐标,判断向量是否共线.
教学重难点
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程
复习平面向量基本定理:
什么叫平面的一组基底?
平面的基底有多少组?
引入:
1.平面内建立了直角坐标系,点A可以用什么来
表示?
2.平面向量是否也有类似的表示呢?
人教版高中数学必修四知识点总结
人教版高中数学必修四主要内容是三角函数和向量,这两个项在高考数学中经常遇到,所以考生在学习的时候要认真学习,下面是我为大家整理的人教版高中数学必修四知识总结,仅供大家参考。
人教版高中数学必修四---三角函数1.人教版高中数学正弦二倍角公式: sin2α= 2cosαsinα
推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2
2.人教版高中数学余弦二倍角公式:余弦二倍角公式有三组表示形式,三组形式等价。
(1)Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]
(2)Cos2a=1-2Sina^2
(3)Cos2a=2Cosa^2-1
推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2
3.人教版高中数学正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]
推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]
降幂公式:cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2
变式: sin2α=sin2α+π4-cos2α+4π=2sin2a+4π-1=1-2cos2α+4π; cos2α=2sinα+4πcosα+4π
4.人教版高中数学半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2;tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
5.人教版高中数学两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
6.人教版高中数学万能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
7.人教版高中数学其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
8.人教版高中数学三角函数口诀
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
人教版高中数学必修四---向量1.人教版高中数学向量的加法:向量的加法满足平行四边形法则和三角形法则。
2.人教版高中数学向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0,即“共同起点,指向被减”
3.人教版高中数学数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
4.人教版高中数学数与向量的乘法满足下面的运算律
结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
5.人教版高中数学向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a?b=x?x'+y?y'。
向量的数量积的运算律
a?b=b?a(交换律);
(λa)?b=λ(a?b)(关于数乘法的结合律);
(a+b)?c=a?c+b?c(分配律);
向量的数量积的性质
a?a=|a|的平方。
a⊥b〈=〉a?b=0。
|a?b|≤|a|?|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。
2、向量的数量积不满足消去律,即:由 a?b=a?c(a≠0),推不出 b=c。
3、|a?b|≠|a|?|b|
4、由|a|=|b|,推不出 a=b或a=-b。
6.人教版高中数学向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
7.人教版高中数学向量的三角形不等式
(1)∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①当且仅当a、b反向时,左边取等号;
②当且仅当a、b同向时,右边取等号。
(2)∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
①当且仅当a、b同向时,左边取等号;
②当且仅当a、b反向时,右边取等号。
OK,本文到此结束,希望对大家有所帮助。